
Security Audits
smart Contract Audits - KYC
Blockchain Security

 $AFPEP TOKEN

AUDIT
SECURITY ASSESSMENT

March , 2025

 FOR

27

Ancient FirePepe

2

 Project Overview 3

Summary 3

Social Medias 3

Audit Summary 4

File Overview 5

Imported packages 5

Components 6

Exposed Functions 6

Capabilities 7

Inheritance Graph 8

Audit Information 9

Vulnerability & Risk Level 9

Auditing Strategy and Techniques Applied 10

Methodology 10

Overall Security 11

Upgradeability 11

Ownership 12

Ownership Privileges 13

Minting tokens 13

Burning tokens 14

Blacklist addresses 15

Fees and Tax 16

Lock User Funds 17

Centralization Privileges 18
Audit Results 19

3

Project Overview

Summary
Project Name $AFPEP

Website https://firepepe.com

About the project FirePepe, Often seen as a role model, Fire Pepe has
 transcended its digital roots to symbolize a broader
 cultural and historical revolution. Fire Pepe emerged from
 the depths of ancient civilizations and, like a glowing fire,
 became a symbol of resilience, creativity, and the
transformative power of online communities

Chain Ethereum Network

Language Solidity

Codebase https://etherscan.io/address/0x5F53bCc29364C4A0796b
2641c5ec6c0397f9c76B#code

Commit N/A

Unit Tests Not Provided

Social Medias
 Telegram https://t.me/AFPEPtoken

Twitter https://x.com/AFPEPtoken

Facebook N/A

Instagram N/A

GitHub N/A

Reddit N/A

Medium N/A

Discord

YouTube

TikTok N/A

LinkedIn N/A

N/A

N/A

https://etherscan.io/address/0x5F53bCc29364C4A0796b2641c5ec6c0397f9c76B#code

4

Audit Summary
 Version Delivery Date Change Log

v1.0 March 2025 • Layout Project

• Automated/Manual-Security
Testing

• Summary

Note – The following audit report presents a comprehensive security
analysis of the smart contract utilized in the project that includes
outside manipulation of the contract’s functions in a malicious way. This
analysis did not include functional testing (or unit testing) of the
contract/s logic. We cannot guarantee 100% logical correctness of the
contract as we did not functionally test it. This includes internal
calculations in the formulae used in the contract.

.27

5

File Overview
The Team provided us with the files that should be tested in the security
assessment. This audit covered the following files listed below with an
SHA-1 Hash.

File Name SHA-1 Hash

 contracts/AFPEP.sol a18ea332400de7ca8a5696a70570c9c851badc0

Please note: Files with a different hash value than in this table have been modified
after the security check, either intentionally or unintentionally. A different hash value
may (but need not) be an indication of a changed state or potential vulnerability that
was not the subject of this scan.

Imported packages.
Used code from other Frameworks/Smart Contracts.

N/A

Note for Investors: We only audited contracts mentioned in the scope
above. All contracts related to the project apart from that are not a part of
the audit, and we cannot comment on its security and are not responsible
for it in any way.

6

External/Public functions
External/public functions are functions that can be called from outside of a contract,
i.e., they can be accessed by other contracts or external accounts on the blockchain.
These functions are specified using the function declaration’s external or public
visibility modifier.

State variables
State variables are variables that are stored on the blockchain as part of the
contract's state. They are declared at the contract level and can be accessed
and modified by any function within the contract. State variables can be
needed within visibility modifier, such as public, private or internal, which
determines the access level of the variable.

Components

 Contracts Libraries Interfaces Abstract

1 0 3 0

7

Capabilities

Transfer
s ETH

 Low-

Level
Calls

Delegate
Call

 Uses

Hash
Functions

ECRecover
New/Create/
Create2

yes

Solidity
Versions
observed

Experimental
Features

 Can

Receive
Funds

🖥 Uses

Assembly

 Has

Destroyable
Contracts

0.8.28 ---------- Yes ----------

8

Inheritance Graph
An inheritance graph is a graphical representation of the inheritance hierarchy
among contracts. In object-oriented programming, inheritance is a mechanism
that allows one class (or contract, in the case of Solidity) to inherit properties and
methods from another class. It shows the relationships between different contracts
and how they are related to each other through inheritance.

9

Audit Information

Vulnerability & Risk Level
Risk represents the probability that a certain source threat will exploit
the vulnerability and the impact of that event on the organization or
system. The risk level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)

Critical
9 - 10

A vulnerability that can disrupt the
contract functioning in a number
of scenarios, or creates a risk that
the contract may be broken.

Immediate action to
reduce risk level.

High
7 – 8.9

A vulnerability that affects the
desired outcome when using a
contract, or provides the
opportunity to use a contract in an
unintended way.

Implementation of
corrective actions as

soon as possible.

Medium
4 – 6.9

A vulnerability that could affect
the desired outcome of
executing the contract in a
specific scenario.

Implementation of
corrective actions in a

certain period.

Low
2 – 3.9

A vulnerability that does not have
a significant impact on possible
scenarios for the use of the
contract and is probably
subjective.

Implementation of
certain corrective

actions or accepting
the risk.

Informational
0 – 1.9

A vulnerability that have
informational character but is not
effecting any of the code.

An observation that
does not determine a

level of risk

10

Auditing Strategy and Techniques Applied
Throughout the review process, care was taken to check the repository
for security-related issues, code quality, and compliance with
specifications and best practices. To this end, our team of experienced
pen-testers and smart contract developers reviewed the code line by
line and documented any issues discovered.

We check every file manually. We use automated tools only so that they
help us achieve faster and better results.

Methodology
The auditing process follows a routine series of steps:

: Codereviewthat includes the following .1

Reviewingthe specifications, sources, and instructions provided to .2
ensure w understand the size, scope, and functionality of the
. smart contract
Manualreview of the code, i.e., reading the source code line by a.
. line to identify potential vulnerabilities
Comparisont o the specification, i.e., verifying that the code b.
 does what is described in the specifications, sources, and
. instructions provided

: Testingandautomated analysis that includes the following .3
Testcoverage analysis determines whether test cases cover a.
 code and how much code is executed when those test cases
. are executed
Symbolicexecution, which is analysing a program to b.
 determine what inputs cause each part of a program t o
. execute

Reviewbest practices, i.e., review smart contracts to improve efficiency, .4
 effectiveness, clarity, maintainability, security, and control based on
 best practices, recommendations, and research from industry and
. academia

Concrete,itemized and actionable recommendations t o help you .5
 .secure your smart contract

 11

Overall Security
Upgradeability

Description The contract is not an upgradeable contract. The
Deployer is not able to change or add any
functionalities to the contract after deploying.

Comment N/A

Contract is not an upgradable
 Deployer cannot update the contract

with new functionalities.

12

Ownership

Description There are no ownership privileges in this contract.

Comment N/A

Note – The contract cannot be considered as renounced till it is not deployed
or having some functionality that can change the state of the contract.

The ownership is
renounced. The ownership is renounced.
Contract ownership is
renounced.

 13

Ownership Privileges
These functions can be dangerous. Please note that abuse can lead to financial loss.
We have a guide where you can learn more about these Functions.

Minting tokens
Minting tokens refer to the process of creating new tokens in a cryptocurrency or
blockchain network. This process is typically performed by the project's owner or
designated authority, who has the ability to add new tokens to the network's total
supply.

Description The owner is not able to mint new tokens once
the contract is deployed.

Comment N/A

 14

Burning tokens
Burning tokens is the process of permanently destroying a certain number of
tokens, reducing the total supply of a cryptocurrency or token. This is usually done
to increase the value of the remaining tokens, as the reduced supply can create
scarcity and potentially drive up demand.

Description The owner is not able burn tokens without
any allowances.

Comment N/A

Contract owner cannot
burn tokens

The owner cannot burn tokens.

 15

Blacklist addresses
Blacklisting addresses in smart contracts is the process of adding a
certain address to a blacklist, effectively preventing them from
accessing or participating in certain functionalities or transactions
within the contract. This can be useful in preventing fraudulent or
malicious activities, such as hacking attempts or money laundering.

Description The owner cannot blacklist wallets from
transferring tokens.

Comment N/A

Contract owner cannot
blacklist addresses. The owner cannot blacklist wallets.

 16

Fees and Tax
In some smart contracts, the owner or creator of the contract can
set fees for certain actions or operations within the contract. These fees
can be used to cover the cost of running the contract, such as paying
for gas fees or compensating the contract's owner for their time and
effort in developing and maintaining the contract.

Description .The owner cannot set fees of more than 15%

Comment N/A

 Contract owner cannot
 .set fees more than 15%

 .The owner cannot set fees more than 15%

 17

Lock User Funds
In a smart contract, locking refers to the process of restricting access to
certain tokens or assets for a specified period of time. When token or
assets are locked in a smart contract, they cannot be transferred or
used until the lock-up period has expired or certain conditions have
been met.

Description The owner cannot lock the contract.

Comment N/A

Contract owner can lock
functions. The owner can lock the contract. The owner cannot lock function.
Contract owner cannot
lock function.

 18

Centralization Privileges
Centralization can arise when one or more parties have privileged access or control
over the contract's functionality, data, or decision-making. This can occur, for
example, if the contract is controlled by a single entity or if certain participants have
special permissions or abilities that others do not.

In the project, there are authorities that have access to the following
functions:

File Privileges

AFPEP.sol
➢ There are no ownership privileges in the contract. The

owner cannot change any settings in the contract.

 In this contract, roles are clearly and functionally defined, which
 improves the security and performance of the contract. Granting roles
.has been very useful for transparency and decentralization

 19

Audit Result

 Critical Issues

No critical issues

 High Issues

No high issues

 Medium Issue

No medium issues

 Low Issue

No low issues

Informational Issue

#1 | Functions that are not used.

File Severity Location Status

AFPEP.sol Informational -- Open

 .Description – Unused functions were removed

 20

Legend for the Issue Status
Attribute or Symbol Meaning

Open The issue is not fixed by the project team.

Fixed The issue is fixed by the project team.

Acknowledged(ACK)
The issue has been acknowledged or declared as
part of business logic.

	audit - Firepepe02.pdf

